Pathways for C-H bond cleavage of propane σ-complexes on PdO(101).

نویسندگان

  • Abbin Antony
  • Aravind Asthagiri
  • Jason F Weaver
چکیده

We used dispersion-corrected density functional theory (DFT-D3) calculations to investigate the initial C-H bond cleavage of propane σ-complexes adsorbed on the PdO(101) surface. The calculations predict that propane molecules adsorbed in η(1) configurations can undergo facile C-H bond cleavage on PdO(101), where the energy barrier for C-H bond activation is lower than that for desorption for each molecular complex. The preferred pathway for propane dissociation on PdO(101) corresponds to cleavage of a primary C-H bond of a so-called staggered p-2η(1) complex which initially coordinates with the surface by forming two H-Pd dative bonds, one at each CH(3) group. Among all of the adsorbed propane complexes, the staggered p-2η(1) complex has the highest binding energy and must overcome the lowest energy barrier for C-H bond scission. Analysis of the atomic charges reveals that propane C-H bond cleavage occurs heterolytically on PdO(101), and suggests that primary C-H bond activation is favored because a more stabilizing charge distribution develops within the 1-propyl transition state structures. Lastly, we conducted kinetic simulations using microkinetic models derived from the DFT-D3 structures, and find that the models reproduce the apparent activation energy for propane dissociation on PdO(101) to within 14% of that determined experimentally. We show that the entropic contributions of the adsorbed transition structures greatly exceed those predicted by the harmonic oscillator model, and that quantitative agreement with the apparent dissociation pre-factor may be obtained by approximating two of the frustrated adsorbate motions as free motions while treating the remaining modes as harmonic vibrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101).

We used temperature programmed reaction spectroscopy (TPRS) and molecular beam reflectivity measurements to investigate the initial dissociation of n-butane isotopologues on PdO(101) and determine kinetic parameters governing the selectivity of initial C-H(D) bond cleavage. We observe differences in the reactivity of the n-butane isotopologues on PdO(101) due to kinetic isotope effects, and fin...

متن کامل

Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.

Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

Natural Bond Orbital (NBO) Study of (5H-tetrazol-1-yl)(triphenylphosphine)gold [Au(tetz)(PPh3)]

In this research work, we studied theoretically the structural properties of (5H-tetrazol-1-yl)(triphenylphosphine)gold or [Au(tetz)(PPh3)] by density functional theory (DFT) method at LANL2DZ level. All calculations were performed at 298.15 K and 1 atmosphere. Firstly, the bond lengths, bond angles, dihedral angles and natural charge density on atoms of the compound were calculated. The depend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 35  شماره 

صفحات  -

تاریخ انتشار 2012